Parallel Programming
with MPI and OpenMP

Michael J. Quinn
Chapter 7

Performance Analysis
Learning Objectives

- Predict performance of parallel programs
- Understand barriers to higher performance
Outline

- General speedup formula
- Amdahl’s Law
- Gustafson-Barsis’ Law
- Karp-Flatt metric
- Isoefficiency metric
Speedup Formula

\[
\text{Speedup} = \frac{\text{Sequential execution time}}{\text{Parallel execution time}}
\]
Execution Time Components

- Inherently sequential computations: $\sigma(n)$
- Potentially parallel computations: $\phi(n)$
- Communication operations: $\kappa(n,p)$
Speedup Expression

\[\psi(n, p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p + \kappa(n, p)} \]
$\varphi(n)/p$
\(\varphi(n)/p + \kappa(n,p) \)
Speedup Plot

“elbowing out”
Efficiency

\[
\text{Speedup} = \frac{\text{Sequential execution time}}{\text{Parallel execution time}}
\]

\[
\text{Efficiency} = \frac{\text{Sequential execution time}}{\text{Processors} \times \text{Parallel execution time}}
\]
\[0 \leq \varepsilon(n,p) \leq 1 \]

\[
\varepsilon(n,p) \leq \frac{\sigma(n) + \phi(n)}{p\sigma(n) + \phi(n) + pk(n,p)}
\]

All terms > 0 \(\Rightarrow\) \(\varepsilon(n,p) > 0\)

Denominator > numerator \(\Rightarrow\) \(\varepsilon(n,p) < 1\)
Amdahl’s Law

\[
\psi(n,p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p + \kappa(n,p)}
\]

\[
\psi(n,p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p}
\]

Let \(f = \frac{\sigma(n)}{\sigma(n) + \phi(n)} \)

\[
\psi \leq \frac{1}{f + (1-f)/p}
\]
Example 1

95% of a program’s execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

\[\psi \leq \frac{1}{0.05 + (1-0.05)/8} \approx 5.9 \]
20% of a program’s execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

\[
\lim_{p \to \infty} \frac{1}{0.2 + \frac{(1-0.2)}{p}} = \frac{1}{0.2} = 5
\]
Pop Quiz

- An oceanographer gives you a serial program and asks you how much faster it might run on 8 processors. You can only find one function amenable to a parallel solution. Benchmarking on a single processor reveals 80% of the execution time is spent inside this function. What is the best speedup a parallel version is likely to achieve on 8 processors?
Pop Quiz

- A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors?
Limitations of Amdahl’s Law

- Ignores $\kappa(n,p)$
- Overestimates speedup achievable
Amdahl Effect

- Typically $\kappa(n,p)$ has lower complexity than $\varphi(n)/p$
- As n increases, $\varphi(n)/p$ dominates $\kappa(n,p)$
- As n increases, speedup increases
Review of Amdahl’s Law

- Treats problem size as a constant
- Shows how execution time decreases as number of processors increases
Another Perspective

- We often use faster computers to solve larger problem instances
- Let’s treat time as a constant and allow problem size to increase with number of processors
Gustafson-Barsis’s Law

\[
\psi(n, p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n)/p}
\]

Let \(s = \frac{\sigma(n)}{\sigma(n) + \varphi(n)/p} \)

\[
\psi \leq p + (1 - p)s
\]
Gustafson-Barsis’s Law

- Begin with parallel execution time
- Estimate sequential execution time to solve same problem
- Problem size is an increasing function of p
- Predicts *scaled speedup*
Example 1

- An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

\[\psi = 10 + (1 - 10)(0.03) = 10 - 0.27 = 9.73 \]

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...
Example 2

What is the maximum fraction of a program’s parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

\[7 = 8 + (1 - \frac{1}{8})s \Rightarrow s \approx 0.14 \]
The Karp-Flatt Metric

- Amdahl’s Law and Gustafson-Barsis’ Law ignore $\kappa(n,p)$
- They can overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric
Experimentally Determined Serial Fraction

\[e = \frac{\sigma(n) + \kappa(n, p)}{\sigma(n) + \phi(n)} \]

Inherently serial component of parallel computation + processor communication and synchronization overhead

Single processor execution time

\[e = \frac{1/\psi - 1/p}{1 - 1/p} \]
Experimentally Determined Serial Fraction

- Takes into account parallel overhead
- Detects other sources of overhead or inefficiency ignored in speedup model
 - Process startup time
 - Process synchronization time
 - Imbalanced workload
 - Architectural overhead
Example 1

<table>
<thead>
<tr>
<th>p</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>1.8</td>
<td>2.5</td>
<td>3.1</td>
<td>3.6</td>
<td>4.0</td>
<td>4.4</td>
<td>4.7</td>
</tr>
</tbody>
</table>

What is the primary reason for speedup of only 4.7 on 8 CPUs?

Since e is constant, large serial fraction is the primary reason.
Example 2

<table>
<thead>
<tr>
<th>p</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>1.9</td>
<td>2.6</td>
<td>3.2</td>
<td>3.7</td>
<td>4.1</td>
<td>4.5</td>
<td>4.7</td>
</tr>
</tbody>
</table>

What is the primary reason for speedup of only 4.7 on 8 CPUs?

| e | 0.070 | 0.075 | 0.080 | 0.085 | 0.090 | 0.095 | 0.100 |

Since e is steadily increasing, overhead is the primary reason.
Isoefficiency Metric

- Parallel system: parallel program executing on a parallel computer
- Scalability of a parallel system: measure of its ability to increase performance as number of processors increases
- A scalable system maintains efficiency as processors are added
- Isoefficiency: way to measure scalability
Isoefficiency Derivation Steps

- Begin with speedup formula
- Compute total amount of overhead
- Assume efficiency remains constant
- Determine relation between sequential execution time and overhead
Deriving Isoefficiency Relation

Determine overhead

\[T_o(n, p) = (p - 1) \sigma(n) + pk(n, p) \]

Substitute overhead into speedup equation

\[\psi(n, p) \leq \frac{p (\sigma(n) + \phi(n))}{\sigma(n) + \phi(n) + T_0(n, p)} \]

Substitute \(T(n, 1) = \sigma(n) + \phi(n) \). Assume efficiency is constant.

\[T(n, 1) \geq C T_0(n, p) \quad \text{Isoefficiency Relation} \]
Scalability Function

- Suppose isoefficiency relation is $n \geq f(p)$
- Let $M(n)$ denote memory required for problem of size n
- $M(f(p))/p$ shows how memory usage per processor must increase to maintain same efficiency
- We call $M(f(p))/p$ the scalability function
Meaning of Scalability Function

- To maintain efficiency when increasing p, we must increase n
- Maximum problem size limited by available memory, which is linear in p
- Scalability function shows how memory usage per processor must grow to maintain efficiency
- Scalability function a constant means parallel system is perfectly scalable
Interpreting Scalability Function

Cannot maintain efficiency

Can maintain efficiency

Number of processors

Memory needed per processor

Memory Size

$C_p \log p$

C_p

$C \log p$

C
Example 1: Reduction

- **Sequential algorithm complexity**
 \[T(n,1) = \Theta(n) \]

- **Parallel algorithm**
 - **Computational complexity** = \(\Theta(n/p) \)
 - **Communication complexity** = \(\Theta(\log p) \)

- **Parallel overhead**
 \[T_0(n,p) = \Theta(p \log p) \]
Isoefficiency relation: \(n \geq C \ p \ \log \ p \)

We ask: To maintain same level of efficiency, how must \(n \) increase when \(p \) increases?

\[M(n) = n \]

\[M\left(C \ p \ \log \ p \right) / p = C \ p \ \log \ p / p = C \ \log \ p \]

The system has good scalability
Example 2: Floyd’s Algorithm

- Sequential time complexity: $\Theta(n^3)$
- Parallel computation time: $\Theta(n^3/p)$
- Parallel communication time: $\Theta(n^2 \log p)$
- Parallel overhead: $T_0(n,p) = \Theta(pn^2 \log p)$
Floyd’s Algorithm (continued)

- Isoefficiency relation
 \[n^3 \geq C(p \ n^3 \ \log p) \Rightarrow n \geq C \ p \ \log p \]

- \[M(n) = n^2 \]

\[
M(\ C p \ \log p \)/ p = C^2 \ p^2 \ \log^2 p / p = C^2 \ p \ \log^2 p
\]

- The parallel system has poor scalability
Example 3: Finite Difference

- **Sequential time complexity per iteration:** \(\Theta(n^2) \)
- **Parallel communication complexity per iteration:** \(\Theta(n/\sqrt{p}) \)
- **Parallel overhead:** \(\Theta(n \sqrt{p}) \)
Finite Difference (continued)

- Isoefficiency relation
 \[n^2 \geq Cn\sqrt{p} \implies n \geq C\sqrt{p} \]

- \(M(n) = n^2 \)

\[
M \left(C \sqrt{p} \right) / p = C^2 \frac{p}{p} = C^2
\]

- This algorithm is perfectly scalable
Summary (1/3)

- **Performance terms**
 - Speedup
 - Efficiency

- **Model of speedup**
 - Serial component
 - Parallel component
 - Communication component
Summary (2/3)

- What prevents linear speedup?
 - Serial operations
 - Communication operations
 - Process start-up
 - Imbalanced workloads
 - Architectural limitations
Summary (3/3)

- Analyzing parallel performance
 - Amdahl’s Law
 - Gustafson-Barsis’ Law
 - Karp-Flatt metric
 - Isoefficiency metric